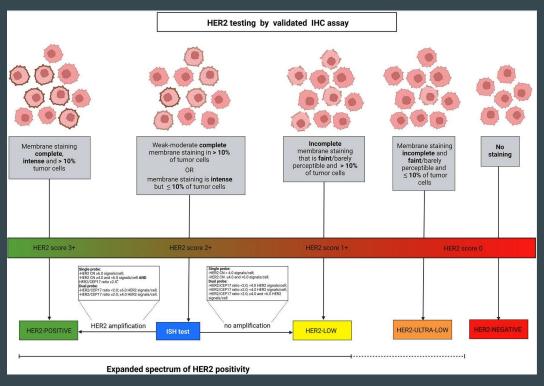
Al-Enabled Digital Pathology: Lessons Learned From Utilization of PathAl's HER2 Algorithm

Dr. Roshanak Derakhshandeh, MD Agilent USCAP Seminar March 25, 2024

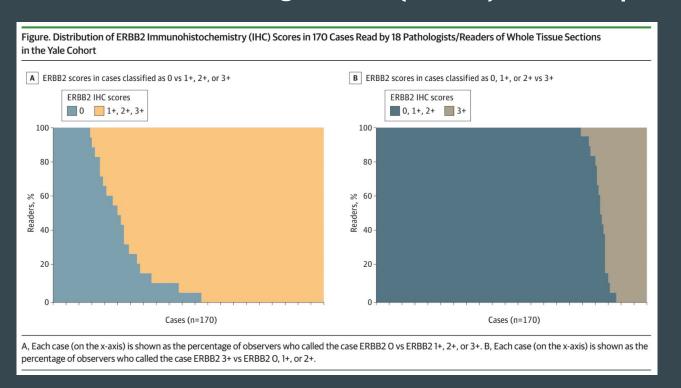
Background

Human Epidermal Growth Factor Receptor 2 (HER2) is a prognostic and predictive factor in the management of breast cancers


Table 12
Treatment Effects in Study 5 as a
Function of HER2 Overexpression or Amplification

HER2 Assay Result	Number of Patients (N)	Relative Risk ^b for Time to Disease Progression (95% CI)	Relative Risk ^b for Mortality (95% CI)
CTA 2+ or 3+	469	0.49 (0.40, 0.61)	0.80 (0.64, 1.00)
FISH (+)a	325	0.44 (0.34, 0.57)	0.70 (0.53, 0.91)
FISH (-) ^a	126	0.62 (0.42, 0.94)	1.06 (0.70, 1.63)
CTA 2+	120	0.76 (0.50, 1.15)	1.26 (0.82, 1.94)
FISH (+)	32	0.54 (0.21, 1.35)	1.31 (0.53, 3.27)
FISH (-)	83	0.77 (0.48, 1.25)	1.11 (0.68, 1.82)
CTA 3+	349	0.42 (0.33, 0.54)	0.70 (0.51, 0.90)
FISH (+)	293	0.42 (0.32, 0.55)	0.67 (0.51, 0.89)
FISH (-)	43	0.43 (0.20, 0.94)	0.88 (0.39, 1.98)

^a FISH testing results were available for 451 of the 469 patients enrolled on study.


^b The relative risk represents the risk of progression or death in the Herceptin plus chemotherapy arm versus the chemotherapy arm.

Equivocal HER2 (2+) results by immunohistochemistry (IHC) present a significant diagnostic challenge, and require FISH adjudication

Venetis *et al.* HER2 Low, Ultra-low, and Novel Complementary Biomarkers: Expanding the Spectrum of HER2 Positivity in Breast Cancer. Front Mol Biosci. 2022.

HER2 1+ cases also feature significant inter-pathologist variability: Only 26% of cases have >90% agreement (0 vs 1+) across 18 pathologists

Fernandez AI, et al. Examination of Low ERBB2 Protein Expression in Breast Cancer Tissue. JAMA Oncol. 2022.

AIM-HER2 Breast Cancer (PathAI) is an AI-powered tool for scoring HER2 immunohistochemistry, available via AISightTM Image Management System¹

Attribute		Description			
Input(s)	Tumor Type(s)	Primary or metastatic breast cancer			
	Collection Type(s)	Biopsies, resections			
	Stain(s)	HER2 (Dako HercepTest or Ventana 4B5)			
	Scanner(s)	Aperio AT2, Aperio GT450, Hamamatsu S360			
Output(s)	Key Result	ASCO/CAP HER2 score (0, 1+, 2+, 3+)			
	Supporting Results	Area of invasive carcinoma (mm²) aMIL scoring heatmaps			
Training Data ²		>157,000 annotations ~12,000 slide-level HER2 scores ~4,000 slides 65+ board-certified breast pathologists			
Workflow		AI-assisted read on AISight TM			
Regulatory Status		Research Use Only			

Sub-models work together to generate scores

Artifact Model

Detect and remove all artifact (e.g., folds, blur)

Tissue Model
Identify and classify stroma, necrosis,
and invasive cancer

Scoring Model
Calculate slide-level scores (per 2018
ASCO / CAP guidelines)

¹ AIM-HER2 Breast Cancer and AISightTM are for Research Use Only. Not for use in diagnostic procedures.

² Shanis *et al.* Accurate quantification of slide-level HER2 scores in breast cancer using a machine-learning model, AIM-HER2 Breast Cancer. SABCS 2023.

Methods

To assess feasibility of Al-based workflows, AlM-HER2 and FISH results were compared on 101 retrospective equivocal (2+) HER2 cases

Cohort Attribute	Value			
Tumor Site	Primary and metastatic breast cancer			
Number of Cases	101			
Sign-out Date	March 2022 – April 2023			
HER2 IHC Score	2+ (n=101)			
Scanner	Hamamatsu NanoZoomer			

Results

AIM-HER2 and pathologist score were concordant for 87% (88/101) cases; 46% (6/13) of discordances were acceptable based on FISH adjudication

Al vs Pathologist Score (All Cases, n=101) Al vs FISH Result (Discordant Al vs Pathologist Cases, n=13)

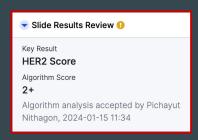
Unacceptable Discordance

N/A

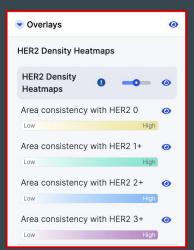
		Pathologist							FISH		
		0	1+	2+	3+				Negative	Positive	
AI	N/A *	_	_	1 (1%)	_		AI	N/A	1 (8%)	_	
	0	_	_	1(1%)	_			0		1 (8%)	
	1+	_	_	4(3%)	_			1+	3 (23%)	1 (8%)	
	2+	_	_	88 (87%)	_			2+	_	_	
	3+	_	_	7 (7%)	_			3+	4 (31%)	3 (23%)	

Concordance

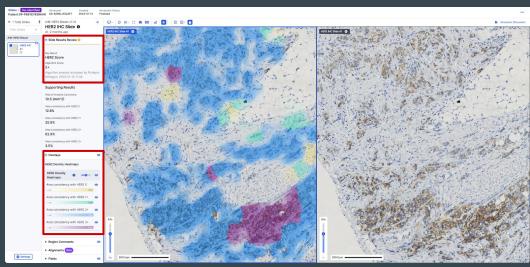
Acceptable Discordance


^{*} AIM-HER2 returns N/A if <0.1 mm² invasive cancer is detected.

AIM-HER2 is deployed on a whole slide image within the AISightTM Image Management System, and automatically identifies on-slide control tissue*

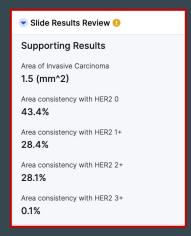


^{*} AIM-HER2 and AISightTM are for Research Use Only. Not for use in diagnostic procedures.

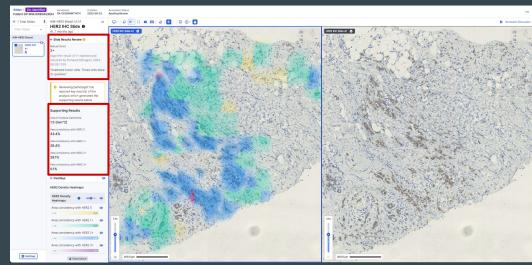

AIM-HER2 provides supporting measures and overlays which can be used to localize staining patterns and highlight intra-tumoral heterogeneity

AI score (2+) is accepted by pathologist.

HER2 density heatmaps localize staining patterns.



AI results are displayed side-by-side with the whole slide image (<u>Case DA-AS66LJ552AFT</u>).


AIM-HER2 provides supporting measures and overlays which can be used to interrogate borderline cases

AI score (1+) is rejected by pathologist (2+), with rationale.

"Area consistency" results highlight this is a borderline 1+/2+ case. Some discordances were in cases with minimal invasive carcinoma detected.

AI results are displayed side-by-side with the whole slide image (<u>Case DA-GI3SWNR7YATV</u>).

Discussion

Conclusions

- In 88/101 cases, AIM-HER2 and the pathologist agreed on the HER2 IHC scoring.
- AI has potential as a screening tool for HER2 IHC, including for equivocal (2+) cases.
- Pathologist oversight is necessary in "AI-assisted pathologist" workflows, especially in cases with minimal residual disease.
- In the era of novel ADC therapies for HER2-low patients, AI has the potential to improve the reproducibility of HER2 low (1+) IHC scoring.

Q & A